Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432992

RESUMO

Plastic waste comprises 15% of the total municipal solid waste and can be a rich source for producing value-added materials. Among them, polyethylene (PE) and polypropylene (PP) account for 60% of the total plastic waste, mainly due to their low-end and one-time-use applications. Herein, we report reusable oil sorbent films made by upcycling waste PE and PP. The as-prepared oil sorbent had an uptake capacity of 55 g/g. SEM analysis revealed a macroporous structure with a pore size range of 1-10 µm, which facilitates oil sorption. Similarly, the contact angle values reflected the oleophilic nature of the sorbent. Moreover, thermal properties and crystallinity were examined using DSC, while mechanical properties were calculated using tensile testing. Lastly, 95% of the sorbed oil could be easily recovered by squeezing mechanically or manually.

2.
ACS Omega ; 4(3): 5052-5063, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459683

RESUMO

Fluorescence enhancement on aggregation for π-conjugates linked with pyridyl ring has been established as a part of widely studied smart organic functional materials. Therefore, the photophysical features in the solution and aggregate states for such compounds remain impressive. In this work, we synthesized three series of photostable unsymmetrical aryl-substituted anthracenyl π-conjugates linked to pyridyl ring with a variation of the position of a pyridyl-N atom and examined the difference in the photophysical properties preferably in the aggregate state. The so-called "aggregation-induced emission (AIE)" behavior was discernible for the 2- and 4-pyridyl- but not 3-pyridyl-10-p-tolyl or mesityl-substituted π-conjugates. Curiously, a variation of the position of a pyridyl-N atom does not solely control the AIE phenomenon for 10-thiophenyl-substituted π-conjugates, where all of the isomers are found to be AIE-active. Hence, the dissimilarity in emission behavior in the aggregate state is governed by the position of N-atom for pyridine and also the substituent at the 10th position of the anthracyl ring. The mechanistic insight behind these observations is demonstrated by concentration-dependent fluorescence studies, time-resolved fluorescence, single-crystal X-ray diffraction studies (largely supportive to understand the molecular structure and packing in the aggregate), and average particle size measurement of the aggregates and partly by the density functional theory studies for a few representative molecules.

3.
ACS Omega ; 3(8): 9114-9125, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459046

RESUMO

Steady development on photophysical behaviors for a variety of organic fluorophores inspired us to generate anthracene-based fluorescent molecules with a strong acceptor and a significantly weak donor through a π-spacer. Such molecules are found to have substantial twisted conformational orientations in the solid state and enhanced apolar character because of the attachment of tolyl or mesityl group with an anthracenyl core. Upon exposure to a variety of solvents, strong solvatochromism was noticed for 4-nitro compound (84 nm red shift) in contrast to the cyano analogue (18 nm red shift). Both these probes were highly emissive in apolar solvents while nitro-analogue, in particular, could discriminate the solvents of E T(30) (a measure of microscopic solvent polarity) ranging from 31 to 37. Thus, 4-nitro compounds can be successfully employed to detect and differentiate the apolar solvents. On the contrary, the 2-nitro analogue is almost nonemissive for the same range of solvents perhaps because of favorable excited-state intramolecular proton-transfer process. The fundamental understanding of solvatochromic properties through the formation of twisted intramolecular charge-transfer (TICT) state is experimentally analyzed by synthesizing and studying the π-conjugates linked to only benzene in place of nitro or cyanobenzene, which exhibits no solvatochromism and that helped finding the possible emission, originated from the locally excited state. Moreover, the molecular structures for these compounds are determined by the single-crystal X-ray diffraction studies to examine the change in emission properties with molecular packing and alignment in the aggregated state. The measurement of dihedral angles between the substituents and anthracenyl core was helpful in finding the possible extent of electronic conjugations within the system to decipher both solvatochromism and aggregation enhanced emission (AEE)-behavior. The cyano analogue exhibited prominent AEE-behavior, whereas nitro analogues showed the aggregation-caused quenching effect. The reason behind such dissimilarity in solvatochromism and AEE-behavior between cyano- and nitro-linked anthracenyl π-conjugates are also addressed through experimental outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...